Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition

نویسندگان

  • V. Craciun
  • J.G.E. Gardeniers
  • Ian W. Boyd
چکیده

Transparent, electrically conductive and c-axis oriented ZnO thin films have been grown by the pulsed laser deposition (PLD) technique on silicon and Coming glass substrates employing either a KrF excimer laser (3. = 248 nm) or a frequency-doubled Nd:YAG laser (3. = 532 rim). The crystalline structure, surface morphology, optical and electrical properties of the deposited films were found to depend not only on the substrate temperature and oxygen partial pressure, but also on the irradiation conditions. The quality of the ZnO layers grown by the shorter wavelength laser was always better than that of the layers grown by the longer wavelength, under otherwise identical deposition conditions. This behaviour was qualitatively accounted for by the results of the numerical solution of a one-dimensional heat diffusion equation which indicated a strong superheating effect of the melted target material for the case of frequency-doubled Nd:YAG laser irradiations. By optimizing the deposition conditions we have grown, employing the KrF laser, very smooth c-axis oriented ZnO films having a full-width at half-maximum value of the (002) X-ray diffraction value less than 0.16 ° and optical transmittance around 85% in the visible region of the spectrum at a substrate temperature of only 300°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of high quality ZnO thin films deposited by pulsed laser deposition

Thin films of ZnO have been deposited on glass and silicon substrates by the pulsed laser deposition technique employing a KrF laser ~l5248 nm!. The influence of the deposition parameters, such as substrate temperature, oxygen pressure, and laser fluence on the properties of the grown films, has been studied. All the films grown over a rather wide range of deposition conditions were found to be...

متن کامل

Structure and properties of transparent conductive ZnO films grown by pulsed laser deposition (PLD)

Zinc Oxide (ZnO) has attracted interest due to its potential applications including nonlinear optical devices, blue‐violet emission device, buffer layer for GaN‐based devices, visible‐range transparent electrodes for solar cell and flat panel displays, surface acoustic wave devices, piezoelectric and piezo‐ optic devices, gas sensors for oxygen, and integrated opt...

متن کامل

Orientation of MgO thin films on Si(001) prepared by pulsed laser deposition

Pulsed laser deposition method was employed to grow MgO thin films with preferred orientation on bare Si(100) and SiO2/Si(100) substrates. The orientation of MgO thin films was systematically investigated by varying deposition parameters. XRD analysis showed that the preferred orientation of MgO thin films would change from (111) to (100) when laser fluence decreased and oxygen pressure increas...

متن کامل

Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition

We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...

متن کامل

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005